首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30193篇
  免费   2010篇
  国内免费   2285篇
  2023年   515篇
  2022年   519篇
  2021年   756篇
  2020年   894篇
  2019年   1285篇
  2018年   1089篇
  2017年   1009篇
  2016年   1013篇
  2015年   877篇
  2014年   1579篇
  2013年   2728篇
  2012年   1042篇
  2011年   1651篇
  2010年   1197篇
  2009年   1628篇
  2008年   1668篇
  2007年   1565篇
  2006年   1542篇
  2005年   1290篇
  2004年   1170篇
  2003年   1052篇
  2002年   909篇
  2001年   590篇
  2000年   484篇
  1999年   509篇
  1998年   459篇
  1997年   379篇
  1996年   356篇
  1995年   442篇
  1994年   417篇
  1993年   375篇
  1992年   378篇
  1991年   286篇
  1990年   280篇
  1989年   238篇
  1988年   221篇
  1987年   226篇
  1986年   175篇
  1985年   244篇
  1984年   286篇
  1983年   219篇
  1982年   258篇
  1981年   173篇
  1980年   137篇
  1979年   117篇
  1978年   61篇
  1977年   53篇
  1976年   46篇
  1975年   22篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters.  相似文献   
52.
《Cell》2021,184(22):5608-5621.e18
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   
53.
54.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
55.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
56.
The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 μg ml−1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.  相似文献   
57.
Amphotericin B (AmB), a typical polyene macrolide antifungal agent, is widely used to treat systemic mycoses. In the present study, we show that the fungicidal activity of AmB was enhanced by benzyl isothiocyanate (BITC), a cruciferous plant-derived compound, in the budding yeast, Saccharomyces cerevisiae. In addition to forming a molecular complex with ergosterol present in fungal cell membranes to form K+-permeable ion channels, AmB has been recognized to mediate vacuolar membrane disruption resulting in lethal effects. BITC showed no effect on AmB-induced plasma membrane permeability; however, it amplified AmB-induced vacuolar membrane disruption in S. cerevisiae. Furthermore, the BITC-enhanced fungicidal effects of AmB significantly decreased cell viability due to the disruption of vacuoles in the pathogenic fungus Candida albicans. The application of the combinatorial antifungal effect of AmB and BITC may aid in dose reduction of AmB in clinical antifungal therapy and consequently decrease side effects in patients. These results also have significant implications for the development of vacuole-targeting chemotherapy against fungal infections.  相似文献   
58.
The purpose of the current study was to investigate whether or not the FABP2 gene polymorphism modulated obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers through 12-week aerobic exercise training in abdominal obesity group of Korean mid-life women. A total of 243 abdominally obese subjects of Korean mid-life women voluntarily participated in aerobic exercise training program for 12 weeks. Polymerase Chain Reaction with Restriction Fragment Length Polymorphism (PCR-RFLP) assay was used to assess the FABP2 genotype of the participants (117 of AA homozygotes, 100 of AT heterozygotes, 26 of TT homozygotes). Prior to the participation of the exercise training program, baseline obesity indices, hemodynamic factor, blood lipid factor, and insulin resistance markers were measured. All the measurements were replicated following the 12-week aerobic exercise training program, and then the following results were found. After 12-week aerobic exercise training program, wild type (Ala54Ala) and mutant type (Ala54Thr+Thr54Thr) significantly decreased weight (P > .001), BMI (P > .001), %bf (P > .001), waist circumference (P > .001), WHR (P > .001), muscle mass (wild type p < .022; mutant type P > .001), RHR (P > .001), viseceral adipose area (wild type p < .005; mutant type P > .001), subcutaneous area (P > .001), insulin (wild type p < .005; mutant type P > .001) and significantly increased VO2max (P > .001). And wild type significantly decresed NEFA (P > .05), glucose (P > .05), OGTT 120min glucose (P > .05) and significantly increased HDLC (p > .005). Mutant type significantly decreased SBP (P > .001), DBP (P > .01), TC (P > .01), LPL (P > .05), LDL (P > .001), HOMA index (P > .01). The result of the present study represents that regular aerobic exercise training may beneficially prevent obesity index, blood pressure, blood lipids and insulin resistance markers independent of FABP Ala54Thr wild type and mutant type.  相似文献   
59.
60.
A biomimetic bone-like composite, made of self-assembled collagen fibrils and carbonate hydroxyapatite nanocrystals, has been performed by an electrochemically-assisted deposition on titanium plate. The electrolytic processes have been carried out using a single type I collagen molecules suspension in a diluted Ca(NO3)2 and NH4H2PO4 solution at room temperature and applying a constant current for different periods of time. Using the same electrochemical conditions, carbonate hydroxyapatite nanocrystals or reconstituted collagen fibrils coatings were obtained. The reconstituted collagen fibrils, hydroxyapatite nanocrystals and collagen fibrils/apatite nanocrystals coatings have been characterized chemically, structurally and morphologically, as well as for their ability to bind fibronectin (FN). Fourier Transform Infrared microscopy has been used to map the topographic distribution of the coating components at different times of electrochemical deposition, allowing to single out the individual deposition steps. Moreover, roughness of Ti plate has been found to affect appreciably the nucleation region of the inorganic nanocrystals. Laser scanning confocal microscopy has been used to characterize the FN adsorption pattern on a synthetic biomimetic apatitic phase, which exhibits a higher affinity when it is inter-grown with the collagen fibrils. The results offer auspicious applications in the preparation of medical devices such as biomimetic bone-like composite-coated metallic implants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号